首页> 外文OA文献 >Detonation-driven-shock wave interactions with perforated plates
【2h】

Detonation-driven-shock wave interactions with perforated plates

机译:爆炸驱动的冲击波与多孔板的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The study of detonations and their interactions is vital for the understanding of the high-speed flow physics involved and the ultimate goal of controlling their detrimental effects. However, producing safe and repeatable detonations within the laboratory can be quite challenging, leading to the use of computational studies which ultimately require experimental data for their validation. The objective of this study is to examine the induced flow field from the interaction of a shock front and accompanying products of combustion, produced from the detonation taking place within a non-electrical tube lined with explosive material, with porous plates with varying porosities, 0.7-9.7%. State of the art high-speed schlieren photography alongside high-resolution pressure measurements is used to visualise the induced flow field and examine the attenuation effects which occur at different porosities. The detonation tube is placed at different distances from the plates' surface, 0-30 mm, and the pressure at the rear of the plate is recorded and compared. The results indicate that depending on the level of porosity and the Mach number of the precursor shock front secondary reflected and transmitted shock waves are formed through the coalescence of compression waves. With reduced porosity, the plates act almost as a solid surface, therefore the shock propagates faster along its surface.
机译:爆炸及其相互作用的研究对于理解所涉及的高速流物理学以及控制其有害影响的最终目标至关重要。然而,在实验室内产生安全且可重复的爆炸可能具有很大的挑战性,导致使用计算研究,最终需要实验数据对其进行验证。这项研究的目的是研究由爆炸引起的冲击波前沿与伴随的燃烧产物之间的相互作用引起的感应流场,爆炸是在衬有爆炸性材料的非电气管中发生的,该非电气管具有孔隙率变化为0.7的多孔板。 -9.7%。最新的高速schlieren摄影技术与高分辨率压力测量技术一起用于可视化感应流场并检查在不同孔隙率下发生的衰减效应。将爆管放置在距板表面0-30 mm的不同距离处,并记录和比较板后部的压力。结果表明,根据孔隙度和前兆激波锋的马赫数,通过压缩波的合并形成了二次反射波和透射波。孔隙率降低时,板几乎充当固体表面,因此冲击沿其表面传播的速度更快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号